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Abstract

The boundary layer similarity flow past an impermeable flat plate, driven by a power law velocity profile U = cya, y!1 is consid-
ered and power series solutions of the momentum equation, valid for all the allowed range of the parameter a, are presented. The con-
vergence radius of the proposed solutions is estimated and a comparison with numerical solutions is reported. The boundary layer energy
equation is then considered for all the wall temperature profiles that admits similarity solutions and power series solutions are given for
the full range of the wall temperature profile parameter n.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Convection over a semi-infinite flat plate is one of the
best known problems in fluid mechanics, as its first analytic
solution for the laminar case dates back to the beginning of
the last century with Blasius (1908) [1] paper. Since then,
the characteristics of momentum and energy transfer over
a flat plate have been extensively studied, both numerically
and analytically, and similarity solutions for a large variety
of boundary conditions were proposed, like for stretching
walls [2–5], porous media (see [6,7]), permeable surfaces
[4,8], etc. Although the numerical approach allows to study
more complex boundary conditions, the importance of
analytical solutions is undeniable and it is witnessed by
the large amount of work performed, particularly in recent
years, on this subject. Recently a fully analytical solution
(i.e. not relying on any approximation) of the Blasius
problem has been found by Liao [9] using the homotopy
analysis method. The case of adjustment of the laminar
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boundary layer to en exterior velocity profile of the form
U ¼ cey a, ey !1 was recently investigated by Weidman
et al. [10] for a large range of value of the power law
parameter a and an analytical solution of the momentum
equation in terms of Airy function was proposed for
the case a = �1/2. Then, Magyari et al. [11] found analy-
tical solution for the same problem (for a = �1/2 and
a = �2/3) with permeable wall. For the same external
velocity profile, Magyari et al. [12] extended the study to
the heat transfer problem and found an exact analytical
solution for the energy equation in terms of Airy function
for the isothermal and adiabatic impermeable wall cases
(again for a = �1/2), while in [13] an analysis of the exis-
tence of similarity solutions of energy and momentum
equations was proposed. The objective of the present paper
is to show the existence of power series solutions for the
momentum boundary layer equation under the general
case of the power-law velocity profile, thus extending the
classical Blasius result for the no-shear case, and for the
energy equation for all the conditions that may assure
the existence of similarity solutions (see also [13]). As
pointed out by Liao [14], Blasius power series solution is
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Nomenclature

a thermal diffusivity
Pr Prandtl number
T temperatureeu velocity along the plate
U free stream velocityev velocity normal to the plate

Greek symbols

H non-dimensional temperature
m kinematic viscosity

r second derivative of f at g = 0: r = f 00(0)
U non-dimensional temperature gradient at the

fluid–solid interface

Indexes

c convergence
w wall
1 free stream
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a semi-analytic one, as it needs the value of f 00(0) which
must be given by numerical techniques, and it is only valid
on a limited range of values of g (the convergence radius of
the power series). The solutions presented here suffer of the
same limitations, nevertheless they are fully justified by the
generalisation of the Blasius result to the exterior shear
flow and by the simplicity of the power series form and
the easiness in calculating the coefficients. Moreover, as
already pointed out by [10] and [12], this case has a variety
of technical and environmental applications and the avail-
ability of analytic (or semi-analytic) solutions can help in
extending the results to many applied fields.

2. Basic equations

Consider an incompressible steady laminar boundary
layer flow over a semi-infinite impermeable flat plate,
neglecting buoyancy and viscous dissipation and with zero
pressure gradient, the basic equations describing the con-
servation of mass, momentum and energy in the boundary
layer are given by [15,16]

oeu
oex þ oev

oey ¼ 0 ð1Þ

eu oeu
oex þ ev oeu

oey ¼ m
o2eu
oey 2

ð2Þ

eu oT
oex þ ev oT

oey ¼ a
o

2T
oey 2

ð3Þ

where ex and ey are the coordinates measured, respectively,
along and normal to the plate. After non-dimensionalising

the variables by x ¼ exL ; y ¼ eyL ; u ¼ euL
m ; v ¼ evL

m , and defin-

ing the similarity coordinate g = yxm�1, the equations
reduce to

f 000 þ mff 00 � f 0f 0ð2m� 1Þ ¼ 0 ð4Þ
Prxf 0T x � mPrfT 0 � T 00 ¼ 0 ð5Þ
where f(g) = wx�m, and w is the non-dimensional stream
function. These equations must be solved subject to the
non-slip boundary conditions on the wall and, following
[10] and [12], we will consider the general case of an
exterior power law velocity profile, then the boundary con-
ditions for the momentum equation become

f 0ð0Þ ¼ 0; f ð0Þ ¼ 0; f 0ðy ¼ 1Þ ¼ bga

and the last one imposes mðaÞ ¼ ðaþ1Þ
ðaþ2Þ, (the classical case

with no shear (a = 0) is obtained for m ¼ 1
2
). Similarity

solutions of the energy equation (5) can be found by choos-
ing appropriate boundary conditions. The transformation:

T ¼ P ðxÞHðg; xÞ þ T1; Hðg; xÞ ¼ T ðx; gÞ � T1
T ðx; 0Þ � T1

;

PðxÞ ¼ T ðx; 0Þ � T1

assures the existence of similarity solutions (i.e. H explicitly
independent of x) of Eq. (5) when P(x) = T(x, 0) � T1 =
Axn, provided A 5 0 [13], yielding the non-dimensional
form of the energy equation

H00m;n þ mðaÞPrf H0m;n � nPrf 0Hm;n ¼ 0 ð6Þ

with boundary conditions: Hm,n(x, 0) = 1; Hm,n(x,1) = 0.
As noticed by Weidman et al. [10] the characteristic length
L can be arbitrarily chosen, and the choice L ¼ ðmc Þ

1
1þa )

b ¼ 1 simplifies the problem. Due to this degree of free-
dom, in the remainder of the paper the value of b will be
set equal to 1 (and L ¼ ðmc Þ

1
1þa) without loss of generality.

3. Power series solutions of the momentum equation

The solution f of the momentum equation (4) has the
following property: the only derivatives of f different from
zero at the origin are: f (3k+2)(the notation f ðkÞ ¼ dkf

dgk will be
used throughout the paper), in other words

f ð3kÞð0Þ ¼ 0; f ð3kþ1Þð0Þ ¼ 0; f ð3kþ2Þð0Þ 6¼ 0; ð7Þ

for any integer k P 0. The statement (7) is true for k = 0, in
fact

f ð0Þ ¼ 0; f ð1Þð0Þ ¼ 0; f ð2Þð0Þ 6¼ 0: ð8Þ

Taking the r-derivative of both sides of Eq. (4), applying
Leibniz rule and using (8)
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f ð3þrÞ ¼
Xr

k¼2

pðr; k;mÞf ðkÞf ðr�kþ2Þ

with pðr; k;mÞ ¼ ð2m� 1Þ r
k � 1

� �
� m

r
k

� �� �
. Suppose

now that the statement (7) is true at least for 0 6 s 6 h

for a given h > 0, i.e.

f ð3sÞð0Þ ¼ 0; f ð3sþ1Þð0Þ ¼ 0; f ð3sþ2Þð0Þ 6¼ 0;

for 0 6 s 6 h, then

f ð3hþ3Þð0Þ ¼
Xh�1

s¼0

pð3h; 3sþ 2;mÞf ð3sþ2Þð0Þf ð3½h�s�Þð0Þ ¼ 0

f ð3hþ4Þð0Þ ¼
Xh�1

k¼0

pð3hþ 1; 3sþ 2;mÞf ð3sþ2Þð0Þf ð3½h�s�þ1Þð0Þ ¼ 0

f ð3hþ5Þð0Þ ¼ pð3hþ 2; 2;mÞf ð2Þð0Þf ð3hþ2Þð0Þ

þ
X3hþ2

k¼3

pð3hþ 2; k;mÞf ðkÞð0Þf ð3h�kþ4Þð0Þ 6¼ 0

showing that the statement holds also for s = h + 1, thus
the statement (7) is proven by induction. Setting G(s)=
f (3s+2) we can write

Gð0Þ ¼ f ð2Þð0Þ ¼ r; Gðzþ1Þ ¼
Xz

s¼0

qmðz; sÞGðsÞGðz�sÞ ð9Þ

with qmðz; sÞ ¼ ð2m� 1Þ 3zþ 2
3sþ 1

� �
� m

3zþ 2
3sþ 2

� �� �
. It is

also easy to show that: GðsÞ ¼ M ðsÞ
m rsþ1and substituting into

Eq. (9) the following recursive definition of M ðsÞ
m is found:
Fig. 1. Power series solutions of the momentum equation for different valu
numerical solutions (thicker line).
M ðsþ1Þ
m ¼

Xs

k¼0

qmðs; kÞM ðkÞ
m M ðs�kÞ

m

with M ð0Þ
m ¼ 1, explicitly: M ð1Þ

m ¼ f3m� 2g; M ð2Þ
m ¼ f9m�

10gf3m� 2g; M ð3Þ
m ¼ f279m2 � 552mþ 300gf3m� 2g etc.

The Taylor expansion of f and f 0 are

f ðgÞ ¼
X
s¼0

M ðsÞ
m rsþ1

ð3sþ 2Þ! g
3sþ2;

f 0ðgÞ ¼
X
s¼0

M ðsÞ
m rsþ1

ð3sþ 1Þ! g
3sþ1 ð10Þ

Fig. 1 reports the approximations obtained by the par-
tial sums (thin lines) compared to the numerical solution
(thick line) obtained by a 4th-order Runge–Kutta method,
following a procedure similar to that reported by [10]. The
convergence radius of the series (10) can be found by
applying the ratio test, obtaining:

gc ¼ 3r�1=3lims!1
s3M ðsÞ

m

M ðsþ1Þ
m

�����
�����
1=3

The first 55 terms of the sequence sn ¼j n3M ðnÞm

M ðnþ1Þ
m
j1=3 were

evaluated and an extrapolation method was applied for
accelerating the convergence, after noticing that snþ1�
sn ’ A

np, and the results are reported in Table 1 and Fig. 2.
It is of some interest to observe that the further transfor-

mation Z = r�1/3f, X = r1/3g yields a solution independent
of r
es of the parameter a. The truncated power series are compared to the



Fig. 2. Convergence radius of the momentum equation power series
solutions for different values of the parameter m ¼ aþ1

aþ2
:

Table 1
Estimated convergence radius for series (10) (column 3) and (11) (column

4) and values of r estimated from r ¼ X a

Zxð1Þ

� � 3
2þa

(column 5) and
numerically evaluated (column 6)

a m gc Xc rest. rnum.

0.5 0.6 5.283 4.282 0.522 0.5325
0.2 0.545 5.603 4.069 0.386 0.3831
0 0.5 5.691 4.069 0.335 0.33206
�0.1 0.4737 5.646 3.940 0.318 0.3236
�0.2 0.444 5.511 3.876 – –
�0.3333 0.4 5.125 3.812 – –
�0.5 0.333 4.131 3.724 – –
�0.6 0.2857 3.063 3.537 – –
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ZðX Þ ¼
X
s¼0

M ðsÞ
m

ð3sþ 2Þ! X 3sþ2 ð11Þ

and the convergence radius Xc is reported in Table 1 and
Fig. 2. Now Zxx(0) = 1; and Zxð1Þ

X a ! r�
2þa

3 , and if the con-
vergence radius is large enough to allow a safe estimation
of the asymptotic value Zx(1), the value of r can be
approximated by r ¼ ð X a

Zxð1Þ Þ
3

2þa. Table 1 shows the results
for the narrow range of values of a (from �0.1 to 0.5)
for which the approximation (obtained by the power series
solution truncated to the 55th term) is lower than 2%. It is
worth to remark that this method is analogous to that used
by Blasius to give the first roughest approximation to r for
a = 0 [1].

4. Power series solutions of the energy equation

Consider the solution Hm, n of the energy equation (6)
the following result holds: the derivatives of Hm, n at the
origin satisfy the relations

Hð3sÞ
m;n ð0Þ ¼ H ðs�1Þ

m;n ðPrÞrs

Hð3sþ1Þ
m;n ð0Þ ¼ Kðs�1Þ

m;n ðPrÞrsUm;n

Hð3sþ2Þ
m;n ð0Þ ¼ 0

ð12Þ
for any s P 0 with U ¼ � oH
og

� �
g¼0

. The statement is true for

s = 0, in fact, considering the energy equation (6), from the
boundary conditions at g = 0 it is easy to see that:
H(0) = 1, H(1) = �U,H(2)(0) = 0, for any m and n , yielding
the values H ð�1Þ

m;n ¼ 1 and Kð�1Þ
m;n ¼ �1. Suppose now that

(12) holds for any s 6 k � 1 for a given value of k > 1. Tak-
ing the h-derivative of both side of Eq. (6), applying Leib-
niz rule and considering Eq. (7)

Hðhþ2Þ
m:n ð0Þ ¼ �mPr

Xh�2
3

p¼0

h

3p þ 2

 !
GðpÞHðh�3p�1Þ

m;n

þ nPr
Xh�1

3

p¼0

h

3p þ 1

 !
GðpÞHðh�3p�1Þ

m;n

so that

Hð3kþ1Þ
m;n ð0Þ ¼ Pr

Xk�1

p¼0

�m
3k � 1

3p þ 2

 !
þ n

3k � 1

3p þ 1

 !" #( )
�M ðpÞ

m Kðk�p�2Þ
m;n ðPrÞrkUm;n

Hð3kþ2Þ
m;n ð0Þ ¼ Pr

Xk�1

p¼0

�m
3k

3p þ 2

 !
þ n

3k

3p þ 1

 !" #
� GðpÞHð3ðk�p�1Þþ2Þð0Þ ¼ 0

Hð3kþ3Þ
m;n ð0Þ ¼ Pr

Xk�1

p¼0

�m
3k þ 1

3p þ 2

 !
þ n

3k þ 1

3p þ 1

 !" #"

� H ðk�p�1Þ
m;n ðPrÞM ðpÞ

m þ nM ðkÞ
m

#
rkþ1

and Eq. (12) hold also for s = k, with

H ðhÞm;n ¼ Pr

"Xh�1

p¼0

�m
3hþ 1

3p þ 2

 !
þ n

3hþ 1

3p þ 1

 !" #

� H ðh�p�1Þ
m;n ðPrÞM ðpÞ

m þ nM ðhÞ
m

#
ð13Þ

KðhÞm;n ¼ Pr
Xh

p¼0

�m
3hþ 2

3p þ 2

 !
þ n

3hþ 2

3p þ 1

 !" #
M ðpÞ

m Kðh�p�1Þ
m;n ðPrÞ

ð14Þ

the statement is therefore proven by induction. The recur-
sive formulas (13,14) with the conditions: H ð�1Þ

m;n ¼ 1,
Kð�1Þ

m;n ¼ �1 allow to evaluate all the derivatives. The expli-
cit calculation of the coefficients H ðsÞm;nðPrÞ and KðsÞm;nðPrÞ
shows (and it is easy to demonstrate that) such coefficients
can be expressed as polynomials in Pr, i.e.,

H ð�1Þ
m;n ¼ 1 H ðsÞm;n ¼ nPr

Ps

k¼0

Ckðm; nÞPrk for s P 0

Kð�1Þ
m;n ¼ �1 KðsÞm;n ¼ Pr

Ps

k¼0

Dkðm; nÞPrk for s P 0



Fig. 3. Power series solutions of the energy equation for a = 0.5. and a = �0.6 and for the three thermal boundary conditions: (a) isothermal wall; (b)
uniform heat flux; (c) adiabatic wall. The thick line is the numerical solution.

G.E. Cossali / International Journal of Heat and Mass Transfer 49 (2006) 3977–3983 3981
The Taylor expansion of the function Hm,n can now be
written as

Hm;n ¼ 1þ
X1
j¼1

HðjÞm;n

j!
gj ¼

X1
s¼0

H ðs�1Þ
m;n ðPrÞrs

3s!
g3sþ3

þ Um;n

X1
s¼0

Kðs�1Þ
m;n ðPrÞrs

ð3sþ 1Þ! g3sþ1 ð15Þ

Fig. 3 reports the approximation obtained by the partial
sums (thin lines) compared to the numerical solution (thick
line) obtained again by a 4th-order Runge–Kutta shooting
method (see also [13]).

5. Some special cases

Consider now some special cases for the momentum
equation solutions. For m = 1/2 the well known Blasius
result is recovered, as q1=2ðz; sÞ ¼ � 1
2

3zþ 2
3sþ 2

� �
[1]. For

m = 2/3 (a = 1) all the coefficients M ðjÞ
2=3 ¼ 0, for j > 0, then

f 0(g) = rg finding the classical Couette solution (r = 1).
For m = 1/3, Weidman et al. ([10]) gave an analytical solu-
tion in terms of Airy functions;

f ¼ ð24Þ1=3 Rð1Þð3�2=3gÞ
Rð3�2=3gÞ

ð16Þ

with RðzÞ ¼
ffiffiffi
3
p

AiðzÞ þ BðzÞ, and RðkÞ ¼ dk R
dzk . The function

R(z) satisfies the differential equation [17]

Rð2Þ ¼ zR ð17Þ
and Rð0Þ ¼ R0 ¼ 2

31=6Cð23Þ
, R(1)(0) = 0, R(2)(0) = 0. Evaluating

the higher derivatives of R(z) from Eq. (17), it is easy to
show that the only derivative R(k) different from zero at
the origin are those for which k = 3s and that
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Rð3ðsþ1ÞÞð0Þ ¼ ð3sþ 1ÞRð3sÞð0Þ ¼
Ys

k¼0

ð3k þ 1ÞR0 ¼ asþ1R0

where explicitly aj = {1, 1,4,28,280, . . .} for j = 0,1, . . . .
Moreover, rewriting Eq. (16) as Rz = (24)�1/3fR and evalu-
ating the higher order derivatives, remembering that
GðsÞ ¼ M ðsÞ

m rsþ1, we obtain the following identity:

R3ðhþ1Þð0Þ ¼
Xh

p¼0

3hþ 2

3p þ 2
6pM ðpÞ

1=3R3ðh�pÞð0Þ ð18Þ

It is interesting to notice that comparing (18) to Eq. (13),
setting n = �m = �1/3 and Pr = �1/2 we also obtain

Rð3sÞð0Þ
R0

¼ H ðs�1Þ
1=3;�1=3 �

1

2

� �
6s ð19Þ

and this is fully consistent with the result obtained by [12]

for the adiabatic case, where H1=3;�1=3 ¼ RðzÞ
Rð0Þ

h i�2Pr
and set-

ting Pr = �1/2 Eq. (19) is re-obtained after expanding
R(z) in power series (clearly, the case Pr = �1/2 has no
physical meaning but sets an interesting relationship be-
tween the analytical solution and the power series one). It
should anyway be stressed that the power series solution
is only valid for g < gc � 4.13, whereas the analytic solution
of Weidman et al. [10] (and Magyari et al. [12] for the en-
ergy equation) holds for every g. Considering the energy
equation, for n = 0 the isothermal case is retrieved, but in
this case it is easy to see that

H ðhÞm;0¼
1 for h¼�1

0 for h P 0



KðhÞm;0¼�mPr

Xh

p¼0

3hþ2

3pþ2

� �
M ðpÞ

m Kðh�p�1Þ
m;0 ðPrÞ

then

Hm;0¼ 1þU
X1
p¼0

Kðp�1Þ
m;0 ðPrÞrp

ð3sþ1Þ! g3pþ1

¼ 1�UgþU
Prmr

4!
g4þU

½�10mPrþð3m�2Þ�Prmr2

7!
g7þ�� �

For m = 1/2 and Pr = 1, the energy and momentum
equation solutions are related by: H1/2,0 = 1 � f 0, then
M ðsÞ

1=2 ¼ �Kðs�1Þ
1=2;0 . On integrating Eq. (6) we obtain after a

partial integration and taking into account the boundary
conditions

Un;mðPrÞ ¼ �mPrb lim
g!1

gaHn;m þ ðmþ nÞPr
Z 1

0

f 0mHn;mdg

ð20Þ
Conjecturing (as in [13]) that H(n, m) goes to zero faster

than g�a when g!1 (for m = 1/3 this was proven by
Magyari et al. [12]), then Eq. (20) becomes

Un;mðPrÞ ¼ ðmþ nÞPr
Z 1

0

f 0mHn;mdg ð21Þ

and the adiabatic case is found for n = �m; Eq. (6) then
reduces to H00m;�m ¼ �mPrðf Hm;�mÞ0 and the equation

f ¼ � 1
mPr

H0m;�m

Hm;�m
which holds for any m, is the differential

version of (14). It is also easy to see that, for any m, the
isothermal and adiabatic solutions are related by the equa-
tion Hm;�m ¼ U�1H0m;0 and in fact:

H ðhÞm;�m ¼ �Prm
Xh

p¼0

3hþ 2

3p þ 2

 !" #
H ðh�p�1Þ

m;n ðPrÞM ðpÞ
m ð22Þ

KðhÞm;0 ¼ �Prm
Xh

p¼0

3hþ 2

3p þ 2

 !" #
Kðh�p�1Þ

m;n ðPrÞM ðpÞ
m ð23Þ

then H ðhÞm;�m ¼ �KðhÞm;0.

6. Conclusions

The boundary layer momentum and energy equations
in the forced convection flow past an impermeable semi-
infinite flat plate in outer shear flow were considered.
Power series solutions of the momentum equation valid
for all values of the shear parameter a ¼ 2m�1

1�m have been
found and a recursive formula to evaluate the power series
coefficients has been proposed. The convergence radius of
the power series solution was estimated for a range of val-
ues of a. Power series solutions of the energy equation
have also been found for all the conditions assuring the
existence of similarity solutions and again recursive for-
mulas to evaluate the power series coefficients have been
proposed. Some special cases were analysed and connec-
tions between power series coefficients for different cases
(like isothermal and adiabatic walls) were pointed out.
Finally, the analytic solution allows for a narrow range
of values of the parameter a (�0.1 to +0.5) a rough esti-
mation (error lower than 2%) of the important parameter
f 00(0).
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