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Abstract

The boundary layer similarity flow past an impermeable flat plate, driven by a power law velocity profile U = yy*, y — oo is consid-
ered and power series solutions of the momentum equation, valid for all the allowed range of the parameter «, are presented. The con-
vergence radius of the proposed solutions is estimated and a comparison with numerical solutions is reported. The boundary layer energy
equation is then considered for all the wall temperature profiles that admits similarity solutions and power series solutions are given for

the full range of the wall temperature profile parameter n.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Convection over a semi-infinite flat plate is one of the
best known problems in fluid mechanics, as its first analytic
solution for the laminar case dates back to the beginning of
the last century with Blasius (1908) [1] paper. Since then,
the characteristics of momentum and energy transfer over
a flat plate have been extensively studied, both numerically
and analytically, and similarity solutions for a large variety
of boundary conditions were proposed, like for stretching
walls [2-5], porous media (see [6,7]), permeable surfaces
[4,8], etc. Although the numerical approach allows to study
more complex boundary conditions, the importance of
analytical solutions is undeniable and it is witnessed by
the large amount of work performed, particularly in recent
years, on this subject. Recently a fully analytical solution
(i.e. not relying on any approximation) of the Blasius
problem has been found by Liao [9] using the homotopy
analysis method. The case of adjustment of the laminar
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boundary layer to en exterior velocity profile of the form
U =vy*, ¥ — oo was recently investigated by Weidman
et al. [10] for a large range of value of the power law
parameter o and an analytical solution of the momentum
equation in terms of Airy function was proposed for
the case o = —1/2. Then, Magyari et al. [11] found analy-
tical solution for the same problem (for = —1/2 and
o= —2/3) with permeable wall. For the same external
velocity profile, Magyari et al. [12] extended the study to
the heat transfer problem and found an exact analytical
solution for the energy equation in terms of Airy function
for the isothermal and adiabatic impermeable wall cases
(again for o = —1/2), while in [13] an analysis of the exis-
tence of similarity solutions of energy and momentum
equations was proposed. The objective of the present paper
is to show the existence of power series solutions for the
momentum boundary layer equation under the general
case of the power-law velocity profile, thus extending the
classical Blasius result for the no-shear case, and for the
energy equation for all the conditions that may assure
the existence of similarity solutions (see also [13]). As
pointed out by Liao [14], Blasius power series solution is
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Nomenclature

a thermal diffusivity

Pr Prandtl number

T temperature

u velocity along the plate

U free stream velocity

v velocity normal to the plate

Greek symbols
(2] non-dimensional temperature
v kinematic viscosity

15 second derivative of fat n =0: ¢ = f"(0)
@ non-dimensional temperature gradient at the
fluid—solid interface

Indexes

c convergence
w wall

0 free stream

a semi-analytic one, as it needs the value of f”(0) which
must be given by numerical techniques, and it is only valid
on a limited range of values of # (the convergence radius of
the power series). The solutions presented here suffer of the
same limitations, nevertheless they are fully justified by the
generalisation of the Blasius result to the exterior shear
flow and by the simplicity of the power series form and
the easiness in calculating the coefficients. Moreover, as
already pointed out by [10] and [12], this case has a variety
of technical and environmental applications and the avail-
ability of analytic (or semi-analytic) solutions can help in
extending the results to many applied fields.

2. Basic equations

Consider an incompressible steady laminar boundary
layer flow over a semi-infinite impermeable flat plate,
neglecting buoyancy and viscous dissipation and with zero
pressure gradient, the basic equations describing the con-
servation of mass, momentum and energy in the boundary
layer are given by [15,16]

ou Ov
_ou _ou_ du
_or T T

where x and y are the coordinates measured, respectively,
along and normal to the plate. After non-dimensionalising

the variables by x =%; y=7%; u=";p =" and defin-
ing the similarity coordinate 5= yx""!, the equations
reduce to

S+ mff" = ff(2m—1)=0 (4)
Prxf'T, —mPrfT' —T" =0 (5)

where f(n) = yx"", and ¥ is the non-dimensional stream
function. These equations must be solved subject to the
non-slip boundary conditions on the wall and, following
[10] and [12], we will consider the general case of an

exterior power law velocity profile, then the boundary con-
ditions for the momentum equation become

f10)=0; f(0)=0; f'(y=o00)=pn*

and the last one imposes m(a) = Eﬁ;;, (the classical case

with no shear (x=0) is obtained for m =1). Similarity
solutions of the energy equation (5) can be found by choos-
ing appropriate boundary conditions. The transformation:

T(x77’)_Toc

T=Px)O(n,x) + T; m;

@(’%x) =
P(x) =T(x,0) — Ty

assures the existence of similarity solutions (i.e. @ explicitly
independent of x) of Eq. (5) when P(x) = T(x,0) — T, =
Ax", provided 4 # 0 [13], yielding the non-dimensional
form of the energy equation

0, +m@PrfO, —nPf'O,,=0 (6)

with boundary conditions: 0,,,(x,0) =1; 0,,,(x,c0) =0.
As noticed by Weidman et al. [10] the characteristic lepgth
L can be arbitrarily chosen, and the choice L = ()™ =
B =1 simplifies the problem. Due to this degree of free-
dom, in the remainder of tllle paper the value of § will be
set equal to 1 (and L = (f)H_*) without loss of generality.

3. Power series solutions of the momentum equation

The solution f of the momentum equation (4) has the
following property: the only derivatives of f different from
zero at the origin are: /**"?)(the notation f® = %{ will be
used throughout the paper), in other words

FE9(0) = 0; FEE2(0) # 0; (7)

for any integer k£ > 0. The statement (7) is true for k =0, in
fact

f0)=0; fV(0)=0; s2(0)#0. (®)

Taking the r-derivative of both sides of Eq. (4), applying
Leibniz rule and using (8)

f(3k+l) (0) _ 0,
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FED = plrkm) O

with p(r,k,m) = {(Zm - 1)<ki 1) - m(;;)} Suppose
now that the statement (7) is true at least for 0 < s < h
for a given 4 >0, i.e.

£EI0) =0; £E(0) =0
for 0 < s < A, then

h—1
f(3h+3)(0) _ Zp(3h, 3542, m)f(3s+2)(O)f(3[h7l‘.])(0) =0
s=0
h—1
f(3h+4>(0) _ ZP(3h $1.3s+ 2’ m)f(s.v+2)(O)f(3[h4]+1)(0) =0

k=0

SE0) = p(3h +2,2,m) P (0)+2(0)

FE(0) # 05

3h+2

+ D pBh+2,km)fP0)fF(0) £ 0
k=3

showing that the statement holds also for s =/ + 1, thus
the statement (7) is proven by induction. Setting G¥=
732 we can write

GO =100 =0 G =Y g,E)GEY  (9)

5s=0
3z+2 3z42 .

- 1)<3s+ 1) _”’<3s+2>} It s

also easy to show that: G*) = M®)¢*+'and substituting into

Eq. (9) the following recursive definition of MY is found:

with ¢,,(z,5) = {(Zm

2.0 .
p / m=0.6
1.8 i/
164 j\‘
|
i
1.4 il
12 /
£ 10
=
= 0a
0.6
0.4
0.2
0.0
0
n
3.0 —
/ [',‘|) m=0.333
25 - i
2.0
£ 15
G
[
1.0
0.5
0.0 r r
0 1 2 3 4 5 6 7 8 ] 10
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M =3 g, (s MM

with M® =1, explicitly: M) = {3m —2}; M? = {9Im—
10}{3m — 2}; M) = {279m> — 552m + 300} {3m — 2} etc.
The Taylor expansion of fand f” are

(5) s+1
M, o 3542,

f(n)=;m17 ;

(s) ~s+1
M, o™ s

S=> ="

= (Bs+1)! (10)

Fig. 1 reports the approximations obtained by the par-
tial sums (thin lines) compared to the numerical solution
(thick line) obtained by a 4th-order Runge-Kutta method,
following a procedure similar to that reported by [10]. The
convergence radius of the series (10) can be found by
applying the ratio test, obtaining:

S3M(s) 173

m

M(S-H)

m

1. = 30 lim,_

The first 55 terms of the sequence s, =| Z;f‘ﬂ(:; ' were
evaluated and an extrapolation method was"applied for
accelerating the convergence, after noticing that s,,|—
Sy nip, and the results are reported in Table 1 and Fig. 2.

It is of some interest to observe that the further transfor-
mation Z =g X = c" 3y yields a solution independent
of ¢

20
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Fig. 1. Power series solutions of the momentum equation for different values of the parameter «. The truncated power series are compared to the

numerical solutions (thicker line).
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Table 1

Estimated convergence radius for series (10) (column ‘3) and (11) (column
4) and values of o estimated from ¢ = (%)' (column 5) and

numerically evaluated (column 6)

o m ’7(‘ Xc ”est ”nunL
0.5 0.6 5.283 4.282 0.522 0.5325
0.2 0.545 5.603 4.069 0.386 0.3831
0 0.5 5.691 4.069 0.335 0.33206
—0.1 0.4737 5.646 3.940 0.318 0.3236
—0.2 0.444 5.511 3.876 - -
—0.3333 0.4 5.125 3.812 - -
—0.5 0.333 4.131 3.724 - -
—0.6 0.2857 3.063 3.537 - -
6.0
55 R -
= 0
5.0 o5
454 O// ok
4.0 4 g
35 -;7*/‘"’“""_ )
. 3.0 o
& 2.5
2.0
1.5
1.0 TN
0.54 — s xc:nccus
0.0 . —————— ———— .
025 030 035 040 045 050 055 060 065
m

Fig. 2. Convergence radius of the momentum equation power series

solutions for different values of the parameter m = %

MY
7Z(X) = 7mX3s+2 11
() < (B3s+2)! (11)

and the convergence radius X, is reported in Table 1 and
Fig. 2. Now Z,.(0) = 1; and Z — ¢, and if the con-
vergence radius is large enough to allow a safe estimation
of the asymptotic value Zx(3oo), the value of ¢ can be
approximated by ¢ = (Zj;> )= Table 1 shows the results
for the narrow range of values of a (from —0.1 to 0.5)
for which the approximation (obtained by the power series
solution truncated to the 55th term) is lower than 2%. It is
worth to remark that this method is analogous to that used
by Blasius to give the first roughest approximation to ¢ for
a=0T[1]

4. Power series solutions of the energy equation

Consider the solution @, , of the energy equation (6)
the following result holds: the derivatives of ©,, , at the
origin satisfy the relations

0,0 (0) = H .V (Pr)o’

@(3s+l)<0) = KE;,;I)(P’”)OJ(Dm,ﬂ (12)

m,n

@(3s+2)(0) -0

m,n

for any s > 0 with @ = (%—‘3) K The statement is true for

s =0, in fact, considering the ennergy equation (6), from the
boundary conditions at =0 it is easy to see that:
0(0) =1, @“) —®,0P(0) =0, for any m and n , yielding
the Values H =1 and K< 1> = —1. Suppose now that
(12) holds for any s<k-—1 for a given value of k > 1. Tak-
ing the A-derivative of both side of Eq. (6), applying Leib-
niz rule and considering Eq. (7)

h=2
e t2) (()) — —mPr - h G» @h—3p-1)
m.n 3p+ ) m,n

G @h-3-1

Mlio

so that
k=1 _ -
0+ (0)  pr o 3k—1 o 3k—1
- P Ip+2 Ip+1
x MPK® 72 (Pr)o* b,
il 3k 3k
e82(0) = Pr —m +n
’ = 3p+2 3p+1
% G(P)@(3(k—17—1)+2)(0) -0
k-1
@(3“; b 3k+1 o 3k+1
= 3p+2 3p+1

x HEr=D(prym») + nM“‘)] !

and Eq. (12) hold also for s = k, with

bl 3h+1 3h+1
HS:L =Pr Z —m - +n *
’ P 3p+2 3p+1

x HI" 7~V (Pr)M?) + an,?] (13)
h 3h+2 3h+2
mn - Prz +n
= 3p+2 3p+1

the statement is therefore proven by induction. The recur-
sive formulas (13,14) with the conditions: H ) =1,
KD = —1 allow to evaluate all the derivatives. The expli-
cit calculation of the coefficients HY (Pr) and K% (Pr)
shows (and it is easy to demonstrate that) such coefficients

can be expressed as polynomials in Pr, i.c.,

M P g h=p=1) (p,,)

m m,n

(14)

HED =1 H®)

m,n

= nPri Ci(m,n)P* fors =0
=0

KoD =1 KW =Pr> Di(m,n)P* fors >0
’ ’ k=0
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Fig. 3. Power series solutions of the energy equation for o = 0.5. and « = —0.6 and for the three thermal boundary conditions: (a) isothermal wall; (b)
uniform heat flux; (c) adiabatic wall. The thick line is the numerical solution.
The Taylor expansion of the function @,,, can now be  result is recovered, as q,;(z,s) = (gzig) [1]. For

written as
00 Hs 1) GS

1+Z mnr’j Z m,n ’13s+3

= K, (Pr)a*

3541
Gs+ 1)1 (15)

+ ¢Wl‘l’l

s=0

Fig. 3 reports the approximation obtained by the partial

sums (thin lines) compared to the numerical solution (thick

line) obtained again by a 4th-order Runge—Kutta shooting
method (see also [13]).

5. Some special cases

Consider now some special cases for the momentum
equation solutions. For m = 1/2 the well known Blasius

m =2/3 («=1) all the coefficients M2/3 =0, for j > 0, then
f(n) =on finding the classical Couette solution (g =1).
For m = 1/3, Weidman et al. ([10]) gave an analytical solu-
tion in terms of Airy functions;

1/3 RY(37y)

f = (16)
with R(z) = V34i(z) + B(z), and R® =42 The function
R(z) satisfies the differential equation [1 ]

R? =:zR (17)
and R(0) = Ry = RM(0) =0, R?(0) = 0. Evaluating

31/61—(2)9
the higher derivatives of R(z) from Eq. (17), it is easy to
show that the only derivative R different from zero at
the origin are those for which k = 3s and that
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)

H(3k + I)R() = CZS_HR()

=0

where explicitly a;= {1,1,4,28,280,...} for j=0,1,....

Moreover, rewriting Eq. (16) as R, = (24)~ u 3fR and evalu-
ating the higher order derivatives, remembering that

GY = MWa1, we obtain the following identity:

REETD(0) = (35 + 1)RPI(0) =

h
3h+2
3(h+1) (p) p3(h
(h+1) §0p+2@MmR -(0) (18)

It is interesting to notice that comparing (18) to Eq. (13),
setting n = —m = —1/3 and Pr = —1/2 we also obtain

(3s)

il (-5)e (19)
and this is fully consistent with the result obtai_nz%d by [12]
for the adiabatic case, where @/3_1/3 = [% and set-
ting Pr=—1/2 Eq. (19) is re-obtained after expanding
R(z) in power series (clearly, the case Pr= —1/2 has no

physical meaning but sets an interesting relationship be-
tween the analytical solution and the power series one). It
should anyway be stressed that the power series solution
is only valid for n <. ~ 4.13, whereas the analytic solution
of Weidman et al. [10] (and Magyari et al. [12] for the en-
ergy equation) holds for every 5. Considering the energy
equation, for n =0 the isothermal case is retrieved, but in
this case it is easy to see that

— h
5 _ {1 for h=—1 4 _ Z (3h+2> MOKY ) ()
m0 0 for h 2 0 mO — 3p+2 m m0
then

oP
m =14+ 3p+1
o=1+ Z 3 +1

Prmo - [—10mPr+ (3m —2)|Prma*
e 7 e

For m=1/2 and Pr=1, the energy and momentum
equation solutlons are related by: @y,0=1—f', then
M<l /)2. 1 /20 On integrating Eq. (6) we obtain after a
partial integration and taking into account the boundary
conditions

=1-dn+o

@, n(Pr) = —mPrf lim %O, ,, + (m + n)Pr/ £1.0,,dn
n—00 0

(20)

Conjecturing (as in [13]) that @™ goes to zero faster
than #~* when n — oo (for m = 1/3 this was proven by
Magyari et al. [12]), then Eq. (20) becomes

@, (Pr) = (m—+ n)Pr/oof,;@n‘,mdn (21)
0

and the adiabatic case is found for n = —m; Eq. (6) then

reduces to @, = -—mPr(f O,._») and the equation
f=-= g”":'“ which holds for any m, is the differential

version of (14). It is also easy to see that, for any m, the

isothermal and adiabatic solutions are related by the equa-
tion O,,_,, = 45*1@/,”,0 and in fact:

h 3h+2
HY = Z H =D (P M) (22)
—0 3[7 +2 '
h 3h+2
KU\, = —Prm Z KD (pryM®) (23)
3p+2 ’

then H® = —K(h)o.
m,—m m,

6. Conclusions

The boundary layer momentum and energy equations
in the forced convection flow past an impermeable semi-
infinite flat plate in outer shear flow were considered.
Power series solutions of the momentum equation valid
for all values of the shear parameter o = % have been
found and a recursive formula to evaluate the power series
coefficients has been proposed. The convergence radius of
the power series solution was estimated for a range of val-
ues of a. Power series solutions of the energy equation
have also been found for all the conditions assuring the
existence of similarity solutions and again recursive for-
mulas to evaluate the power series coefficients have been
proposed. Some special cases were analysed and connec-
tions between power series coefficients for different cases
(like isothermal and adiabatic walls) were pointed out.
Finally, the analytic solution allows for a narrow range
of values of the parameter o (—0.1 to +0.5) a rough esti-
mation (error lower than 2%) of the important parameter

J"(0).
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